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Abstract
We study the Aharonov–Bohm–Coulomb problem in a graphene ring. We
investigate, in particular, the effects of a Coulomb-type potential of the form ξ/r
on the energy spectrum of Dirac electrons in the graphene ring in two different
ways: one for the scalar coupling and the other for the vector coupling. It is
found that, since the potential in the scalar coupling breaks the time-reversal
symmetry (TRS) between the two valleys as well as the effective TRS in a single
valley, the energy spectrum of one valley is separated from that of the other
valley, demonstrating a valley polarization. In the vector coupling, however, the
potential does not break either of the two symmetries and its effect appears only
as an additive constant to the spectrum of the Aharonov–Bohm potential. The
corresponding persistent currents, the observable quantities of the symmetry-
breaking energy spectra, are shown to be asymmetric about zero magnetic flux
in the scalar coupling, while symmetric in the vector coupling.

PACS numbers: 73.23.−b, 81.05.ue

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene is a two-dimensional composite lattice with a honeycomb structure and consists of
two sublattices of carbon atoms. The corresponding Brillouin zone (BZ) is also a hexagon with
high symmetry points at vertices as well as at center and side (see figure 1) [1, 2]. Near the
vertices of the BZ the low-energy electronic spectra are linearly dependent on the magnitude
of momentum, forming conical valleys, and the dynamics of electrons in graphene can be
formulated by the Dirac equation of massless fermion [3, 4]. Because of this Dirac fermion-
like behavior of electrons, graphene may offer an opportunity to test the various predictions
of the planar field theories [5, 6] by experiment with solid state material. In this respect, there
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Figure 1. The Honeycomb lattice (left) consists of two sublattices, one with A atoms and the
other with B atoms. The right is the corresponding BZ and its symmetry points. Note that the two
symmetry points, K and K′, are related by K′ = −K. The energy spectra near these points for the
conduction band are given by E = �vF |k ± K|, which are the conic dispersion relations, called
valleys.

has been much effort to connect the two-dimensional (2D) field theory with the graphene
physics [7], including the Aharonov–Bohm (AB) effect [8] in a ring geometry of graphene
[9, 10–12].

The studies of the AB effect in a graphene ring were mostly concerned about the breaking
of time-reversal symmetry (TRS) that yields a splitting of the valley degeneracy due to the
TRS in graphene. In this regard, the authors of [9] have demonstrated that the splitting of the
degeneracy in a single valley can be controlled by the threaded magnetic flux and a confinement
potential of the Dirac electrons on the AB ring of graphene. An interesting result from the
work was that the confinement potential, introduced as a mass term in the Dirac equation,
leads to a breaking of the TRS in the absence of the magnetic flux.

In this paper, motivated from the above result, we study the Aharonov–Bohm–Coulomb
(ABC) problem [13, 14] in a graphene ring to investigate the effect of a Coulomb-type
potential in the form of ξ/r on the splitting of valley degeneracy4. Within the framework of
field theory there are many possible ways to introduce the potential to the Dirac equation.
The only criterion for a consistent coupling of the potential to the Dirac equation is the
fact that the larger component of the Dirac field ϕ should satisfy the Schrödinger equation
[p2/2M + ξ/r]ϕ = Eϕ in the non-relativistic Galilean limit [15]. In fact, there are at least two
ways such that the same consistent Galilean limit is fulfilled. In this work, we consider the
following two possibilities [16]: one is the scalar coupling and the other is the vector coupling.
As we shall describe explicitly in the following section, in the former case the ξ/r potential
enters the Dirac equation as a mass term, while it enters the equation as an energy term in
the latter case. From the viewpoint of TRS, the scalar coupling is expected to break the TRS,
but the vector coupling is not. In the following, we explicitly show that the scalar coupling
indeed leads to the splitting of valley degeneracy, while the vector coupling does not. What is
remarkable and new in our result is that, besides the splitting of the single-valley degeneracy,
the scalar coupling produces a separation between the energy spectrum of one valley and that
of the other valley, and the separation increases with the interaction strength ξ .

The paper is organized as follows. In section 2, starting with a brief recapitulation of the
TRS in graphene, we give a qualitative argument how the TRS is broken by the ξ/r potential
in the AB ring of graphene, whereby the splitting of valley degeneracy is produced. In
section 3, we solve the 2D Dirac equation for the scalar coupling of the potential in a graphene
ring. We derive an analytical expression of the energy spectrum in terms of the valley parameter
(denoted by τ ) and the interaction strength ξ . These two parameters interplay to separate the

4 Thus it includes both the electric Coulomb potential and a relativistic scalar potential.
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whole energy spectrum of one valley from the other. We then compute a persistent current in
the ring. Owing to the separation of energy spectra, the persistent current is asymmetric about
the zero magnetic flux, which represents an essentially single-valley characteristic in the case
of scalar coupling, known as the valley polarization [17, 18]. In section 4, we present the energy
spectrum for the vector coupling. It is shown that, contrary to the scalar coupling case, the
potential via vector coupling to the Dirac equation alone can break neither the intravalley nor
the intervalley degeneracies because of the conservation of the TRS. We find that the potential
in the vector coupling serves effectively as an additive constant in the energy spectrum and is
completely decoupled from the AB effect. Finally, a conclusion is given in section 5.

2. TRS breaking and splitting of valley degeneracy

In this section, we first briefly recapitulate the discrete symmetry of the time reversal in
graphene, then discuss the symmetry breaking in the ABC problem of a graphene ring. As
illustrated in figure 1, there are two inequivalent symmetry points K and K′ in the BZ of
a graphene, and with each point two sublattices A and B are associated. The Hamiltonian
of a Dirac electron in graphene is conveniently described by two pseudospins related to the
two valleys at K and K′ and the two sublattices. In the following, we use the Pauli matrices
τ = (τ1, τ2, τ3) and σ = (σ1, σ2, σ3) to denote the valley and sublattice degree of freedom,
respectively, and also use the 2 × 2 unit matrices τ0 and σ0. Based on the geometry in
figure 1, the Hamiltonian and corresponding four-component spinor can be described as

H0 = τ0 ⊗ HK, HK = vFσ · p, � = (�AK, �BK,−�BK′ , �AK′ )T , (1)

where vF ∼ c/300 is the Fermi velocity, T stands for transpose and we have used the valley-
isotropic form of Hamiltonian for the convenience of subsequent calculations [17].

To see the TRS in graphene we introduce the following time-reversal operator:

T = [(iτ2) ⊗ (iσ2)] C, (2)

where C is the complex conjugate operator. The effect of T on the Hamiltonian H0 and the
state � are

T H0T −1 = H0, T � = (�∗
AK′ , �

∗
BK′ ,−�∗

BK, �∗
AK )T . (3)

This shows that the Hamiltonian H0 is invariant under the transformation by T , but it
interchanges the valleys; there exists a degeneracy between the two valleys (henceforth,
intervalley degeneracy). According to [19], the Hamiltonian satisfies another TRS under the
transformation by the operator

� = τ0 ⊗ �σ , �σ = iσ2C. (4)

With this operator one can verify

�H0�
−1 = H0, �� = (�∗

BK,−�∗
AK, �∗

AK′ , �
∗
BK′ )

T . (5)

This operator exchanges the sublattices within a single valley, but does not interchange the
valleys as we can see in the right equation. Since the Hamiltonian H0 is invariant, this leads to a
degeneracy within a single valley (henceforth, intravalley degeneracy) [20]. More specifically,
the operator �σ transforms HK in equation (1) to �σ HK�−1

σ = HK , that is, HK is invariant as
the intravalley degeneracy implies: �σ effectively changes the sign of σ and p.

Having introduced the TRS of graphene we now discuss the TRS breaking of the ABC
problem in the graphene ring. For this, we first consider an AB-type ring of a graphene
discussed in [9]: inner and outer radii of the ring are a + w/2 and a − w/2, so that the ring
width is w. Since the Hamiltonian H0 has a valley-isotropic form, it is more convenient to use

3



J. Phys. A: Math. Theor. 45 (2012) 055301 E Jung et al

HK with two-component spinor and insert the valley index in an appropriate place. For the AB
ring, the Hamiltonian then reads5

H(A) = HK (A) + τV (r)σ3, HK (A) = vFσ · (p + eA) , (6)

where the circularly symmetric potential τV (r)σ3 is introduced to confine a Dirac electron on
the graphene ring: V (r) = 0 when |r − a| � w/2 and V (r) → ∞ when |r − a| � w/2. The
index τ = ±1 denotes the valleys τ = +1 for the K valley and τ = −1 for the K′ valley. We
note here that this potential is proportional to σ3.

Obviously, the magnetic field breaks the effective TRS of �σ : �σ HK (A)�−1
σ =

HK (−A). In fact, the TRS of the Hamiltonian with four-component spinor is also broken:
T [τ0 ⊗ HK (A)]T −1 = τ0 ⊗ HK (−A). Thus, the presence of the magnetic field will lift both
of the intervalley and intravalley degeneracies. What is interesting in equation (6) is the TRS
breaking by the confinement potential term when A = 0. In the absence of the magnetic field
one can see

�σ [HK (0) + τV (r)σ3]�−1
σ = HK (0) − τV (r)σ3. (7)

This implies that the intervalley degeneracy can be broken by the confinement potential as
demonstrated in [9]. According to Berry [22], this potential enters the 2D Dirac equation by
the replacement of Mc2 → Mc2 + V (r)σ3 with M = 0 for a massless particle. In this sense
the confinement potential is regarded as a mass term in the Dirac equation, and it can be
conjectured that a mass term proportional to σ3 leads to a breaking of the effective TRS in an
AB graphene ring.

We now turn to the problem of ABC in the graphene ring. Here, we need to include
a Coulomb-type potential ξ/r in the Dirac equation. To address the TRS breaking by this
potential, we begin with the general form of a 2D relativistic Dirac equation minimally
coupled to the AB potential A, which can be written as

[cβγ · 	 + βMc2]ψ = Eψ, (8)

where M is the bare mass of a Dirac electron, ψ is the two-component spinor and
	i = −i∂i − eAi is the covariant derivative multiplied by −i. The Dirac matrix is chosen
as

β = σ3, βγi = (σ1, sσ2), {γ μ, γ ν} = 2ημν, ημν = (+,−,−), (9)

where s is twice of the spin value (+1 for spin ‘up’ and −1 for spin ‘down’). We employ a
thin flux tube as the AB potential in the form

eAi = αεi jr j

r2
, (10)

which yields the magnetic field B = −2παδ(r)/e along the z-direction as expected. Therefore,
the parameter α represents a magnetic flux in unit of −e/(2π).

As mentioned in the introduction there are at least two possibilities for the potential
ξ/r 6 to be included in the Dirac equation, the scalar coupling and the vector coupling. For the
scalar coupling, it couples to the equation as[

cβγ · 	 + β

(
Mc2 + ξ

r

)]
ψ = Eψ, (11)

5 Throughout this paper we use the convention � = c = 1 unless otherwise specified.
6 It should be noted that this is a three-dimensional (3D) expression of the Coulomb potential. The true 2D expression
of the Coulomb potential is proportional to ln r. The reason for the use of ξ/r is due to the fact that the 2D graphene
is embedded in the 3D space.
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and for the vector coupling the equation becomes

[cβγ · 	 + βMc2]ψ =
(

E − ξ

r

)
ψ. (12)

From a physical point of view, the potential ξ/r in the vector coupling corresponds to the
electric Coulomb potential (time component of the relativistic 4-vector) and the potential in
the scalar coupling is a relativistic scalar potential (other than the electric Coulomb potential).
For the Dirac electron in a graphene, since M = 0 and c = vF , we have

Hsψ = Eψ, Hs(A) = HK (A) + ξ

r
σ3, (13)

Hvψ = Eψ, Hv(A) = HK (A) + ξ

r
, (14)

where Hs(A) and Hv(A) stand for Hamiltonians of scalar coupling and vector coupling,
respectively, HK (A) is given in equation (6), and we have used the conventions in equation (9)
with s = +1.

As before, the magnetic field will break both of the TRSs for T and �. To see the effect
of the potential ξ/r, we take the time-reversal transformation on the Hamiltonians for A = 0.
For the operator T , we obtain

T τ0 ⊗ Hs(0)T −1 = τ0 ⊗
[

HK (0) − ξ

r
σ3

]
,

T τ0 ⊗ Hv(0)T −1 = τ0 ⊗
[

HK (0) + ξ

r

]
.

(15)

The scalar coupling breaks the TRS for T , but the vector coupling preserves the TRS. For the
effective TRS operator �σ , the two Hamiltonians are transformed to

�σ Hs(0)�−1
σ = HK (0) − ξ

r
σ3,

�σ Hv(0)�−1
σ = HK (0) + ξ

r
.

(16)

Here, we have the same results: the scalar coupling breaks the effective TRS for �σ , but the
vector coupling does not. Therefore, we expect that the scalar coupling will lift both of the
intervalley and intravalley degeneracies. On the other hand, the vector coupling breaks neither
of the two degeneracies. In the following sections, we will compute the energy spectra of the
ABC problem in the graphene ring to show the effects of each coupling explicitly.

3. ABC problem with scalar coupling

In this section, we compute the energy spectrum for the scalar coupling of ABC in the graphene
ring. As described before, the geometry of the ring is the same as discussed in [9]. Using the
Hamiltonian (13) and the confinement potential in equation (6), the 2D Dirac equation is
written as

Hsψ = Eψ, Hs =
[
vFσ · (p + eA) + ξ

r
σ3

]
+ τV (r)σ3, (17)

where τ = ± is the valley index. As defined earlier, in the confinement potential, V (r) = 0
when |r − a| � w/2 and V (r) → ∞ when |r − a| > w/2. According to [21] and [22], the
boundary conditions on the two-component spinor ψ can be expressed as

ψ = τ (n⊥ · σ)ψ,

⎧⎪⎨
⎪⎩

n⊥ = (− sin θ, cos θ ), r = a + w

2

n⊥ = −(− sin θ, cos θ ), r = a − w

2
,

(18)

5
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where n⊥ is the unit vector perpendicular to the normal direction n on the boundary (i.e.
n⊥ · n = 0) and lies in the (x, y) plane, that is, on the ring plane. This choice of boundary
conditions is based on the requirement of the hermiticity of the Hamiltonian H within the
boundary, which yields the condition of no outward current at any point on the ring boundary
(i.e. n · v = 0, where v = 〈ψ |vFσ|ψ〉).7

For a Dirac electron inside the ring, the Dirac equation reads, using V (r) = 0,[
σ · (p + eA) + ξ̃

r
σ3

]
ψ = Ẽψ, (19)

where Ẽ = E/vF and ξ̃ = ξ/vF . Operating [−σ · (p + eA) + σ3ξ̃ /r + Ẽ] on the equation and
using polar coordinates, we have second-order equations[

∂2
r + 1

r
∂r + 1

r2
(∂θ + iα)2 − ξ̃ 2

r2
+ Ẽ2 + seBσ3

]
ψ = iξ̃

r2

(
0 −e−isθ

eisθ 0

)
ψ, (20)

where B and α are the magnetic field and flux given in equation (10). Since the Hamiltonian
(17) satisfies [H, J3] = 0, where J3 = −i∂θ + (s/2)σ3, the solution to the Dirac equation can
be written in the form

ψ(r, θ ) =
(

χ1m(r) ei(m−s/2)θ

χ2m(r) ei(m+s/2)θ

)
,

(
m = ±1

2
,±3

2
, · · ·

)
. (21)

Inserting this into equation (20), we can extract the radial equation[
∂2

r + 1

r
∂r − (m + α)2 + ξ̃ 2 + 1/4

r2
+ Ẽ2

] (
χ1m(r)
χ2m(r)

)
= − 1

r2
(ησ3 − ξ̃σ2)

(
χ1m(r)
χ2m(r)

)
, (22)

where

η = m + α. (23)

Using the matrix diagonalization, the right-hand side can be written as

ησ3 − ξ̃σ2 = ε(η)

√
η2 + ξ̃ 2 U†

c σ3Uc

Uc = cos
φ

2
σ0 + i sin

φ

2
σ1

(
−π

2
� φ = tan−1 ξ̃

η
� π

2

)
,

(24)

where ε(x) = |x|/x is the alternating function, σ0 is the 2 × 2 unit matrix and

tan
φ

2
= ε(η)

√
η2 + ξ̃ 2 − |η|

ξ̃
. (25)

With this diagonalization, the radial equation (22) reduces to[
∂2

r + 1

r
∂r − (m + α)2 + ξ̃ 2 + 1/4

r2
+ Ẽ2

] (
f1m(r)
f2m(r)

)
= − 1

r2
ε(η)

√
η2 + ξ̃ 2 σ3

(
f1m(r)
f2m(r)

)
,

(26)

where the two components f1m(r) and f2m(r) are related to the spinor χ(r) as

χ(r) =
(

χ1m(r)
χ2m(r)

)
= U†

c

(
f1m(r)
f2m(r)

)
. (27)

7 More precisely, the boundary conditions are determined by the self-adjointness of the Hamiltonian H in (17):
〈ψ |Hψ〉 − 〈Hψ |ψ〉 = 0. Mathematically, this is related to the self-adjoint extension with deficiency indices (2, 2),
so that the two-component spinor satisfies ψ = Uψ at boundaries, where U is a 2 × 2 unitary, Hermitian matrix with
a unit determinant [23, 24]. In the present case, U = n⊥ · σ with which the operator �σ = iσ2C anticommutes, that
is, {U, �σ } = 0. Thus, the chosen boundary condition does not preserve the effective TRS. This particular choice of
U is to prevent the Klein tunneling [25].
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The reduced equation for each component in equation (26) is the Bessel equation and,
introducing the dimensionless radial variable ρ = |Ẽ|r, the solutions can be expressed as

f1m(ρ) = A1mH (1)
ν− (ρ) + B1mH (2)

ν− (ρ),

f2m(ρ) = A2mH (1)
ν+ (ρ) + B2mH (2)

ν+ (ρ),
(28)

where H (1)
ν (ρ) and H (2)

ν (ρ) are the Hankel functions, and the orders are given by

ν± =
√

ξ̃ 2 + η2 ± 1
2ε(η). (29)

Substituting these solutions with relation (27) into the spinor ψ in (21) and using the Dirac
equation (19) together with the recurrence relations of the Bessel equations one can also derive
the following relations between coefficients:

A2m = iε(ηE )A1m, B2m = iε(ηE )B1m. (30)

The eigenspinor χ(ρ) for the radial equation (22) is then obtained to be(
χ1m(ρ)

χ2m(ρ)

)
= U†

c

(
A1mH (1)

ν− (ρ) + B1mH (2)
ν− (ρ)

iε(ηE )A1mH (1)
ν+ (ρ) + iε(ηE )B1mH (2)

ν+ (ρ)

)
. (31)

To determine the coefficients A1m and B1m for each m, we use the boundary conditions given
in equation (18). For the components of the spinor solution (21), the boundary conditions give

χ2m(ρ1/|Ẽ|) = −iτχ1m(ρ1/|Ẽ|),
χ2m(ρ2/|Ẽ|) = iτχ1m(ρ2/|Ẽ|), (32)

where ρ1 = |Ẽ|(a − w/2) and ρ2 = |Ẽ|(a + w/2). Defining

Y (i)(ν1, ν2; ρ) = tan
φ

2
H (i)

ν1
(ρ) − ε(ηE )H (i)

ν2
(ρ)

Z(i)(ν1, ν2; ρ) = H (i)
ν1

(ρ) + ε(ηE ) tan
φ

2
H (i)

ν2
(ρ)

(33)

with i = 1 or 2, the boundary conditions (32) read

[Y (1)(ν−, ν+; ρ2) + τZ(1)(ν−, ν+; ρ2)]A1m

+ [Y (2)(ν−, ν+; ρ2) + τZ(2)(ν−, ν+; ρ2)]B1m = 0

[Y (1)(ν−, ν+; ρ1) − τZ(1)(ν−, ν+; ρ1)]A1m

+ [Y (2)(ν−, ν+; ρ1) − τZ(2)(ν−, ν+; ρ1)]B1m = 0. (34)

The secular equation requires then the following relation:

Y (1)(ν−, ν+; ρ2) + τZ(1)(ν−, ν+; ρ2)

Y (1)(ν−, ν+; ρ1) − τZ(1)(ν−, ν+; ρ1)
= Y (2)(ν−, ν+; ρ2) + τZ(2)(ν−, ν+; ρ2)

Y (2)(ν−, ν+; ρ1) − τZ(2)(ν−, ν+; ρ1)
. (35)

From this, the spectrum of energy eigenvalues of a Dirac electron in the graphene ring can be
calculated. It should be noted here that the scalar coupling is implied in the orders ν± of the
Hankel functions (see equation (29)) and hence equation (35) with ξ̃ = 0 is identical to the
energy eigenvalue equation derived in [9].

To obtain an explicit expression of the eigenvalue spectrum, we assume
w

2a
∼ vF

|E|a � 1 (36)

7
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and exploit the asymptotic formula of the Hankel functions for large ρ in condition (35). This
gives the following equation:

|E| = εn + vF

w
ε(η)

√
η2 + ξ̃ 2

(
vF

|E|a
)

�τ,m,s(α; ξ̃ ; E ), (37)

where εn = vF (n + 1/2)/w (n = 0, 1, 2, . . .), and

�τ,m,s(α; ξ̃ ; E ) = ε(ω1)τ

√
ω2

1 − ω2,

ω1 = τε(η)
( w

2a

) √
η2 + ξ̃ 2 − ε(E )

(
vF

2|E|a
) |η|√

η2 + ξ̃ 2
+ ε(η)

ξ̃√
ξ̃ 2 + η2

,

ω2 =
(

vF

|E|a
)(

ξ̃ 2

ξ̃ 2 + η2

) [(
3vF

4|E|a
)

ξ̃ 2 + τε(E )
(w

a

)
η

]
.

(38)

Solving equation (37) by iteration and keeping leading terms, the energy eigenvalues are
obtained to be

Enm(τ, ξ , α) = ±εn ± Enm(τ, ξ , α), (39)

where

Enm(τ, ξ , α) =
(

2a

w

) [
1

2εn

(vF

a

)2
]

ε(η)
√

η2 + ξ 2�τ,m,s(α; ξ ;±εn). (40)

In figure 2, we plot the first few positive energy levels with n = 0 as a function of the
magnetic flux α for different values of ξ . In the figure, the solid and dotted lines correspond
to τ = 1 and τ = −1, respectively. Figure 2(a) is the plot of α-dependence when the
Coulomb interaction is zero, which is the same situation as [9]. For the analysis of the energy
spectrum with ξ = 0, we let E0m(τ, 0, α) = E(τ, m, α). When α = 0, since the TRS by
T is preserved, there are degeneracies between E(1, m, 0) and E(−1,−m, 0). However, the
intravalley degeneracy is broken, that is, E(τ, m, 0) �= E(τ,−m, 0) because of the confinement
potential that breaks the effective TRS by �. Obviously, when α �= 0, these degeneracies are
broken due to the AB potential.

Figures 2(b) and (c) are the plots of α-dependence when ξ = 0.2 and ξ = 0.4, the case
of repulsive interaction. As noted from the figures, the splitting of the intravalley degeneracy
still exists due to the mass terms of the scalar coupling and the confinement potential. What
is more interesting here is that the scalar coupling raises the whole energy spectrum of the
τ = +1 valley and lowers the whole energy spectrum of the τ = −1 valley. The situation
will be reversed if the interaction is attractive; the τ = −1 valley is raised, while the τ = +1
valley is lowered. As explained in section 2, this effect is ascribed to the TRS breaking by the
scalar coupling of ξ/r entered as a mass term in the Dirac equation.

Another interesting feature to be noted is that the separation between the two spectra
gets larger as the interaction strength increases. To see the energy difference between the
two separated spectra, we look into the τ -dependent part in equation (40) for a fixed set of
(n, m, α). The energy difference is then determined by the term Enm(τ, ξ , α), which can be
positive or negative depending on the sign of τ together with η and ω1. With the assumption
(36), since ηω1 ∼ ϑξ (ϑ a positive constant), we may write Enm(τ, ξ , α) ∝ ε(τξ )ξ

√
η2 + ξ 2,

which becomes positive when τξ > 0 and negative when τξ < 0. Thus, for a repulsive
interaction for which ξ > 0, the energy spectrum of τ = +1 valley is raised, while that of
τ = −1 valley is lowered; for the attractive interaction, since ξ < 0, the opposite occurs. The
energy difference between the two spectra is then �Enm ∝ ξ

√
η2 + ξ 2, which explains the

increase of the separation with ξ .
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Figure 2. Energy spectrum of positive E0m(τ, ξ , α). For convenience, we choose vF = w = 1 and
a = 10. The solid and dotted lines correspond to τ = 1 and τ = −1, respectively. As indicated
in (a) the colors pink, orange, red, green, blue and cyan correspond to m = 5/2, 3/2, 1/2, −1/2,
−3/2 and −5/2, respectively. (a) The energy spectrum when ξ = 0, the case without interaction
which is identical to [9]. (b) and (c) The energy spectra when the interaction exists. Note that,
besides the breaking of valley degeneracy, the spectrum of the τ = +1 valley is raised and the
spectrum of the τ = −1 valley is lowered.
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A possible way of observing the splittings of valley degeneracies is to measure the
magnetic moment induced by the persistent current in the graphene ring [26]. The persistent
current can be obtained from the energy eigenvalues and, at zero temperature, it is given by

I(ξ , α) = −
∑
τ=±1

∑
n

∑
m

∂

∂α
Enm(τ, ξ , α). (41)

In figure 3, we present the persistent current as a function of the magnetic flux α for different
values of ξ and the number of electrons N (including spin). Figure 3(a) is the plot when ξ = 0,
the case without interaction. Since the intervalley degeneracy exists the current is symmetric
about α = 0 when there are an equal number of electrons at each valley, as can be seen from
the figure. When ξ > 0 and large, the separation between the two spectra of τ = ±1 valleys
is large. Since the electrons occupy from the lowest levels at zero temperature the states of the
lower spectrum (the τ = −1 valley) will be occupied first, while those of the higher spectrum
(the τ = +1 valley) are almost empty. Thus, the persistent current is contributed largely by the
lower valley electrons and becomes essentially a single-valley phenomenon, known as valley
polarization. This should produce an asymmetric persistent current about α = 0 and a finite
value at α = 0, which are illustrated in figures 3(b) and (c). As we can note in figure 3(b), even
for a very small value of the interaction strength, the qualitative feature is quite different from
the case without the interaction because of its role of symmetry breaking. We also emphasize
that the α-dependences of persistent currents for ξ > 0 are essentially the same because the
electrons occupy only the energy levels in the lower spectrum corresponding to the τ = −1
valley.

4. ABC problem with vector coupling

In this section, we consider the vector coupling of the potential ξ/r. Here, we will use the term
Coulomb potential because the vector coupling is related to the electric Coulomb potential.
Using the Hamiltonian given in equation (14) the Dirac equation inside the ring can be written
as

σ · (p + eA) ψ =
(

Ẽ − ξ̃

r

)
ψ. (42)

Operating σ · (p + eA) on the equation and following the same procedure as in the previous
section the reduced radial equation is given by⎡
⎣∂2

r + 1

r
∂r − η2 + 1/4

r2
+

(
Ẽ2 − ξ̃

r

)2
⎤
⎦ (

f1m(r)
f2m(r)

)
= − 1

r2
ε(η)

√
η2 − ξ̃ 2σ3

(
f1m(r)
f2m(r)

)
.

(43)

Here, the two components ( f1m(r), f2m(r)) are related to the spinor χ(r) as follows:

χ(r) =
(

χ1m(r)
χ2m(r)

)
= U−1

v

(
f1m(r)
f2m(r)

)
, (44)

where the transformation matrix Uv is defined by

U±1
v = cosh

φ

2
σ0 ± ε(ξ̃ )ε(η) sinh

φ

2
σ2

tanh
φ

2
= ε(ξ̃ )

|η| −
√

η2 − ξ̃ 2

ξ̃

(45)
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Figure 3. Persistent currents as a function of α for different values of ξ . N is the number of electrons
in the occupied states. (a) When ξ = 0, the case without Coulomb interaction. (b) and (c) Cases
with Coulomb interaction through the scalar coupling. Note that persistent currents are symmetric
about α = 0 when ξ = 0, but asymmetric about α = 0 when ξ > 0. The latter is ascribed to the
separation between the spectrum of the τ = +1 valley and that of the τ = −1 valley.
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and satisfies the matrix diagonalization ησ3 − iξ̃σ1 = ε(η)

√
η2 − ξ̃ 2U−1

v σ3Uv . Note that Uv

in equation (44) is not unitary.
The solutions of equation (43) are expressed in terms of the confluent hypergeometric

functions:

f1m(ρ) = eiρ (−2iρ)t− [C1mM(a−, b−, −2iρ) + D1mU (a−, b−, −2iρ)]

f2m(ρ) = eiρ (−2iρ)t+ [C2mM(a+, b+, −2iρ) + D2mU (a+, b+, −2iρ)],
(46)

where M(a, b, ρ) and U (a, b, ρ) are the Kummer functions [27], ρ = |Ẽ|r, and a±, b± and t±
are given by

a± = t± + 1

2
+ iε(Ẽ)ξ̃ , b± = 2t± + 1

t± =
√

η2 − ξ̃ 2 ± ε(η)

2
. (47)

By the same method as in section 2 and exploiting the recurrence relations and differential
properties of the confluent hypergeometric functions, one can derive the following relations
between coefficients after some algebra:

C2m = ε(E )c21C1m, D2m = ε(E )d21D1m, (48)

where

c21 = −
⎛
⎝ |η|

4(η2 − ξ̃ 2) + 2
√

η2 − ξ̃ 2

⎞
⎠

ε(η)

, d21 =
⎛
⎝

√
η2 − ξ̃ 2 + iε(E )ξ̃

|η|

⎞
⎠

ε(η)

. (49)

Substituting solutions (46) with relation (48) into the transformation equation (44), we can
write the eigenspinor χ(ρ) as(

χ1m(ρ)

χ2m(ρ)

)
= eiρ (−2iρ)t−

(
m1(ρ) u1(ρ)

m2(ρ) u2(ρ)

)(
C1m

D1m

)
, (50)

where

m1(ρ) = cosh
φ

2
M(a−, b−,−2iρ) + iε(ξ̃ηE )(−2iρ)ε(η) c21 sinh

φ

2
M(a+, b+,−2iρ)

u1(ρ) = cosh
φ

2
U (a−, b−,−2iρ) + iε(ξ̃ηE )(−2iρ)ε(η) d21 sinh

φ

2
U (a+, b+,−2iρ)

m2(ρ) = ε(E )(−2iρ)ε(η) c21 cosh
φ

2
M(a+, b+,−2iρ) − iε(ξ̃η) sinh

φ

2
M(a−, b−,−2iρ)

u2(ρ) = ε(E )(−2iρ)ε(η) d21 cosh
φ

2
U (a+, b+,−2iρ) − iε(ξ̃η) sinh

φ

2
U (a−, b−,−2iρ).

(51)

To proceed, we use the same infinite mass boundary condition introduced in section 2. Inserting
equation (50) into the boundary condition (32), it is straightforward to show

[m2(ρ2) − iτm1(ρ2)]C1m + [u2(ρ2) − iτu1(ρ2)] D1m = 0

[m2(ρ1) + iτm1(ρ1)]C1m + [u2(ρ1) + iτu1(ρ1)] D1m = 0,
(52)

where ρ1 = |Ẽ|(a − w/2) and ρ2 = |Ẽ|(a + w/2). The secular equation requires then the
following condition:

m2(ρ2) − iτm1(ρ2)

m2(ρ1) + iτm1(ρ1)
= u2(ρ2) − iτu1(ρ2)

u2(ρ1) + iτu1(ρ1)
. (53)
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Figure 4. Energy spectrum for the vector coupling. For convenience, we choose vF = w = 1
and a = 10. The solid and dotted lines correspond to τ = 1 and τ = −1, respectively. The
curves correspond to m = 5/2, 3/2, 1/2, −1/2, −3/2 and −5/2, respectively in the same order
as indicated in figure 2(a). (a) and (b) Energy spectra for ξ = 0.2 and ξ = 0.6, respectively. Note
that the intervalley symmetry about α = 0 is still kept here even in the presence of the potential,
and the whole spectrum is raised by ξ/a compared to figure 2(a).

To obtain the eigenvalue spectrum, we impose the same condition with equation (36) and
use the asymptotic formula8 of the confluent hypergeometric functions for large ρ. Expanding
equation (53) up to the second order of perturbation, one can show that the energy eigenvalue
satisfies

8 For large |z|,

M(a, b, z) ∼ ezza−b �(b)

�(a)

∑
n=0

(b − a)n(1 − a)n

n!
z−n, U (a, b, z) ∼ z−a

∑
n=0

(a)n1 + a − b)n

n!
(−z)−n,

where (a)n = a(a + 1) · · · (a + n − 1); see [27].
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Figure 5. The ξ -dependence of the energy spectrum when there is no AB potential (that is, when
α = 0). For convenience, we let E0m(τ, ξ , 0) = E(m, τ, ξ ), and the parenthesis denotes (m, τ ).
(a) and (b) correspond to the scalar coupling and the vector coupling for m = ±1/2,±5/2 and
τ = ±1, respectively. The splitting of intervalley degeneracy is clearly seen in (a), but it is not
broken in (b).

|E| = vF

w

[(
n + 1

2

)
π + 2ε(E )ξ̃

( w

2a

)
+ η2

(
vF

|E|a
) ( w

2a

)
− τ

2
ε(E )η

(
vF

|E|a
)2

]
, (54)

where n is a non-negative integer. Solving equation (54) by iteration and keeping only the
leading terms, we obtain the energy eigenvalues

Enm(τ, ξ , α) = ±εn ± λnη

(
η ∓ τ(

n + 1
2

)
π

)
+ ξ

a
, (55)

where εn = vF (n + 1/2)/w (n = 0, 1, 2, . . .) and λn = (vF/a)2/2εn, and the α-dependence
is through the variable η defined in equation (23).
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We can immediately see from equation (55) that the effect of the potential ξ/r in the
vector coupling is merely an additive constant (ξ/a), shifting the whole spectrum of energy
eigenvalues. It also reveals the complete decoupling between the AB and the Coulomb effects,
because the Coulomb effect appears in the first order, whereas the AB effect arises in the
second-order perturbation. In figure 4, we show the energy spectrum in which the symmetry
between the two valley spectra about α = 0 is manifested, representing the existence of the
intervalley degeneracy. As discussed in section 2, the Hamiltonian without the AB potential
in equation (42) is invariant under the time-reversal operators T and �, and hence the vector
coupling breaks neither the intervalley nor the intravalley degeneracies. It is thus expected
that the eigenvalue spectrum in the vector coupling has essentially the same feature as the
spectrum without the Coulomb interaction. By the same reason, the Coulomb potential in the
vector coupling does not alter the behavior of the persistent current and hence it is symmetric
about α = 0 as shown in figure 3(a).

In figure 5, we also present the energy spectrum as a function of ξ without the AB potential
to compare the bare effects of the Coulomb-type potential between the scalar coupling and the
vector coupling. Figure 5(a) shows the splitting of intervalley degeneracy due to the symmetry-
breaking term in the scalar coupling. However, in figure 5(b), we see that no intervalley splitting
exists in the case of vector coupling. This also confirms that, in the case of vector coupling,
the Coulomb potential alone does not break the intervalley degeneracy, as explained by the
consideration of the TRS.

5. Conclusion

In this paper, we have considered the ABC problem in a graphene ring with a magnetic flux
tube and a Coulomb-type potential ξ/r at its center. We have investigated the effects of the
potential on the energy spectrum in two different ways: the scalar coupling and the vector
coupling. In the scalar coupling, the potential enters the 2D Dirac equation as a symmetry-
breaking mass term, so that both the intervalley and the intravalley degeneracies are broken.
The main effect of the interaction appears as the separation between the energy spectrum of
one valley and that of the other valley, which is attributed to the breaking of the intervalley
degeneracy; for the repulsive interaction the τ = +1(K) valley is lifted, while the τ = −1(K′)
valley is lowered and vice versa for the attractive interaction. Contrary to the scalar coupling,
the potential in the vector coupling does not break any symmetry and only shifts the AB energy
spectrum, indicating essentially the same feature as the energy spectrum without a Coulomb
potential.

The results obtained here suggest that the scalar coupling of the Coulomb-type potential
ξ/r can decouple the two valleys because of the considerable lift of the energy spectrum,
so that each valley degree of freedom becomes an independent quantity, called a valley
isospin. A real experiment with the graphene ring may realize this decoupling, known as the
valley polarization, which is an important element in the graphene-based electronics, called
valleytronics [18, 28].

Another interesting issue related to the AB effect is when the thin magnetic flux tube is
located at the center of the honeycomb lattice shown in figure 1(a). Since the anyon is a flux-
carrying particle, a similar situation arises when there is an anyon impurity in the graphene
plane. Since, in this case, the magnetic flux is located on the graphene, we should treat the
singular solution problem, which was extensively discussed in [29, 30] in the context of
the anyonic and cosmic string theories. Roughly speaking, there are two prescriptions for the
interpretation of the singular solution: one is a mathematics-based prescription called self-
adjoint extension and the other is a physics-based prescription. We do not know yet which
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prescription is physically more reasonable. Probably, the real experiment with graphene may
shed light on the treatment of the singular solution. If so, our understanding on the anyonic
and cosmic string theories can be greatly enhanced through the graphene physics. We will
explore this issue in the future.
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